Emergency Back-up Power Generation for Water & Wastewater Facilities

Emergency Back-up power sources

- Multiple utility feeds
- On site emergency power sources
 - Diesel powered generator sets
 - Natural Gas generator sets
 - Bi-fuel generator sets
 - Gas Turbines

Multiple Utility Feeds

- Pros
 - Majority of the equipment is owned and maintained by the utility company.
 - Lowest cost per kWh produced during outage of the primary feed.
- Cons
 - Susceptibility to failure during natural disaster higher due to failure upstream.

Multiple Utility Feeds

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

Diesel Powered Generator Sets

- Pros
 - Reliable technology
 - High power density
 - On site fuel storage
 - Cost per kW installed
- Cons
 - High cost of fuel per kWh produced
 - Emissions

Natural Gas Powered Generator Sets

- Pros
 - Low cost of fuel per kWh produced
 - Emissions
- Cons
 - Less reliable source of fuel during natural disasters
 - Inferior transient response
 - Cost per kW installed

Bi-fuel Powered Generator Sets 70% Diesel 30% Natural Gas

- Pros
 - Lower installation cost per kW than Natural gas engine or Turbine
 - Ability to supplement diesel fuel with natural gas during power outage, if natural gas supply remains available
- Cons
 - Higher installation cost than diesel genset
 - Not commonly offered by major engine manufacturers
 - Additional complexity

Natural Gas Turbines

- Pros
 - High power density
 - Better transient response than Natural gas engines
- Cons
 - Less reliable source of fuel during natural disasters
 - Higher cost per kW installed
 - Power output is temperature dependent

Power Source Summary

	Diesel	Nat. Gas	Bi-fuel	Gas Turbines
Power Density	***	*	**	****
Emissions	*	****	**	***
Installed cost	****	**	***	*
Fuel cost	*	****	**	***
Transient response	***	*	***	****

Power System Design Considerations

- Small power systems (<1000kW)
 - Typically 480 Volts
 - One generator set
 - Automatic Transfer Switch
 - Automatic Transfer Switchboard
- Large power systems
 - Typically 4.16 kV or 12.47 kV
 - Automatic Transfer Switchgear
 - Single or Multiple generator sets
 - Utility Paralleling Switchgear

Power System Design Considerations

- Neutral grounding
 - Solid grounded
 - Most common in 480 V systems
 - Low impedance grounded
 - Most common in medium voltage systems
 - High impedance grounded
 - Less common
 - More complex to design
 - Generally provides higher reliability of service

Contactor Based ATS

ATS Operation (Open Transition Return)

Solid State ATS

Circuit Breaker Based ATS

- Simple
- Inexpensive
- Power Switching Assy.
 - Molded or Insulated case switch
 - External protection required
 - Molded or Insulated case cb
 - No external protection required
- Open Transition

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

Automatic Transfer Switchboard

- Familiar Circuit Breaker technology
- Open or Closed Transition
 - 100msec or soft transfer
- Active / Passive Synchronization

ATSB Operation (Closed Transition Return)

Automatic Transfer Switchgear

 Integration of emergency power source into the plant distribution switchgear

Switchgear

- Back-up generation ready power distribution system design:
 - Provision for connection of generators
 - Equipment configuration
 - Electrically operated circuit breakers, CTs, PTs and other accessories.
 - Segregation of the load to allow cost effective load shedding
 - Site physical layout

Switchgear

- Utility paralleling
 - Load testing of generators
 - Peak shaving
- Single large or Multiple small generators

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

Peak Sharing

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

Baseload Control

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

Baseload Control

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

Import Control

Export Control

Copyright © 2006 Advanced Power Technologies, Inc. www.aptinc.net

SCADA System

- Supervisory Control And Data Acquisition
- System visualization and remote control
- Events and alarm logging
- Email event notification
- Historical data logging
- Full access from remote location
- Ethernet connection
 - Modbus TCP (port 502) interface
 - Http (port 80) web browser interface

SCADA Interface

Genset Metering

Alarm Log

$ \Delta $	Active Time 🔻	Message		
A	05/08/2006 15:19:33	Genset #1 Overcrank Shutdown		
<u>A</u>	05/08/2006 15:19:33	Genset #1 High Crankcase Pressure Shutdown		
<u>A</u>	05/08/2006 15:10:20	Genset #3 Fuel Filter Plugged Alarm		
<u>A</u>	05/08/2006 15:10:20	Genset #3 High Crankcase Pressure Alarm		
<u>A</u>	05/08/2006 15:10:20	Genset #3 High Aftercooler Temperature Alarm		
Δ	05/08/2006 15:10:20	Genset #3 High Crankcase Pressure Shutdown		
	05/08/2006 15:10:20	Genset #2 Overcrank Shutdown		
\checkmark	05/08/2006 15:10:20	Genset #2 High Aftercooler Temperature Alarm		
\checkmark	05/08/2006 15:10:20	Genset #2 High Crankcase Pressure Alarm		
\checkmark	05/08/2006 15:10:20	Genset #2 High Crankcase Pressure Shutdown		
\checkmark	05/08/2006 15:10:19	Genset #1 High Crankcase Pressure Alarm		

Т R Ε Ν D Ν

G

Event Log

Message		Event Time 🔻			
Utility #1 Circuit BreakerOpen Utility #1 Circuit BreakerClosed		05/08/2006 15:45:55 05/08/2006 15:45:37			
	Engine				Date - 05/08/2

Economics

- Most common source of on-site emergency power is diesel generator set.
 - Typical total cost of installed power system is between \$450 and \$650 per kW
 - Factors affecting installed cost include:
 - Power system voltage
 - Building or outdoor enclosed equipment
 - Fuel storage size and configuration
 - Specified equipment requirements

Economics

- Natural Gas Genset based system.
 - Typical total cost of installed power system is between \$850 and \$1200 per kW
 - Factors affecting installed cost include:
 - Power system voltage
 - Building or outdoor enclosed equipment
 - Specified equipment requirements

Financing

- Alternative financing options through Energy Services Companies
 - Expedite Financing and Construction projects by utilizing Alternative Energy Related financing opportunities
 - Taking advantage of the latest State Legislation
 - Qualifying factors for alternative financing options may include:
 - Savings in water consumption costs, wastewater usage costs and other operating costs, and increase of billable revenues
 - Guaranteed savings, Energy, Operations and Capital avoidance.

